Robust control law design for lateral-directional modes of an F-16/MATV using μ-synthesis and dynamic inversion

Author(s):  
William C. Reigelsperger ◽  
Kelly D. Hammett ◽  
Siva S. Banda
2021 ◽  
Vol 11 (5) ◽  
pp. 2312
Author(s):  
Dengguo Xu ◽  
Qinglin Wang ◽  
Yuan Li

In this study, based on the policy iteration (PI) in reinforcement learning (RL), an optimal adaptive control approach is established to solve robust control problems of nonlinear systems with internal and input uncertainties. First, the robust control is converted into solving an optimal control containing a nominal or auxiliary system with a predefined performance index. It is demonstrated that the optimal control law enables the considered system globally asymptotically stable for all admissible uncertainties. Second, based on the Bellman optimality principle, the online PI algorithms are proposed to calculate robust controllers for the matched and the mismatched uncertain systems. The approximate structure of the robust control law is obtained by approximating the optimal cost function with neural network in PI algorithms. Finally, in order to illustrate the availability of the proposed algorithm and theoretical results, some numerical examples are provided.


2021 ◽  
pp. 13-21
Author(s):  
Eugenie L. Eremin ◽  
Larisa V. Nikiforova ◽  
Evgeniy A. Shelenok

The article studies control algorithms of multiply connected system for dynamic plants with control saturation and nonlinear cross-connections. The authors of the article offer a decentralized control law based on the hyperstability criterion. They also use this law to constuct the MIMO servo system with input saturation. To illustrate the capability of the proposed decentralized robust control system the authors use an inverted pendulums connected by a spring.


Author(s):  
Romulus Lungu ◽  
Mihai Lungu

This paper focuses on the automatic control of aircraft in the longitudinal plane, during landing, by using the linearized dynamics of aircraft, taking into consideration the wind shears and the errors of the sensors. A new robust automatic landing system (ALS) is obtained by means of the H-inf control, the dynamic inversion, an optimal observer, and two reference models providing the aircraft desired velocity and altitude. The theoretical results are validated by numerical simulations for a Boeing 747 landing; the simulation results are very good (Federal Aviation Administration (FAA) accuracy requirements for Category III are met) and show the robustness of the system even in the presence of wind shears and sensor errors. Moreover, the designed control law has the ability to reject the sensor measurement noises and wind shears with low intensity.


2003 ◽  
Author(s):  
Ningsu Luo ◽  
Jose Rodellar ◽  
Rodolfo Villamizar ◽  
Josep Vehi
Keyword(s):  

2020 ◽  
Vol 08 (01) ◽  
pp. 33-48
Author(s):  
S. Mathavaraj ◽  
Radhakant Padhi

A nonlinear robust control design approach is presented in this paper for a prototype reusable launch vehicle (RLV) during the critical re-entry phase where the margin for error is small. A nominal control is designed following the dynamic inversion philosophy for the reaction control system (RCS) and optimal dynamic inversion philosophy for the aerodynamic control actuation. This nominal controller is augmented next with a barrier Lyapunov function based neuro-adaptive control in the inner loop, which enforces the body rates of the actual system i.e. in presence of uncertainties to track the closed-loop body rates of the nominal plant. A fusion logic is also presented for fusing the RCS and aerodynamic control. The control design approach presented here assures robust tracking of the guidance commands despite the presence of uncertainties in the plant model. Extensive nonlinear six degree-of-freedom (DoF) simulation study, which embeds additional practical constraints such as actuator delay in the aerodynamic control actuation and constraints related to the RCS, shows that the proposed design approach has both good command following as well as robustness characteristics.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Mihai Lungu ◽  
Romulus Lungu

The paper presents an adaptive system for the control of small satellites’ attitude by using a pyramidal cluster of four variable-speed control moment gyros as actuators. Starting from the dynamic model of the pyramidal cluster, an adaptive control law is designed by means of the dynamic inversion method and a feed-forward neural network-based nonlinear subsystem; the control law has a proportional-integrator component (for the control of the reduced-order linear subsystem) and an adaptive component (for the compensation of the approximation error associated with the function describing the dynamics of the nonlinear system). The software implementation and validation of the new control architecture are achieved by using the Matlab/Simulink environment.


2015 ◽  
Vol 18 (5) ◽  
pp. 1765-1780 ◽  
Author(s):  
Niladri Sekhar Tripathy ◽  
Indra N. Kar ◽  
Kolin Paul

Sign in / Sign up

Export Citation Format

Share Document